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INTRODUCTION

k. Wang of RIACS has derived a formula for the volume of a

lune formed by two spheres of unequal radii in a binary vector

space.I This paper gives two proofs of Wang's formula, and an

integral approximation for the intersection in this case.

Let S be the set of all n-bit binary words. This set may be

described as the set of all n-dimensional vectors, each of whose

components is 0 or I, and thus may be thought of geometrically as

the set of all vertices of an n-dimensional unit cube embedded in

an n-dimensional vector space, or as an n-dimensional vector

space over the field consisting of the two elements 0 and 1. Any

of the 2n points in S is like any other in the sense that there

is an isometry of S which maps one point onto the other.

For two points x = (Xl,...,xn) and y = (yl,...,yn) in S,

lWang's work will appear in a forthcoming RIACS technical report.
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we let

n

d(x,y) : E Ixi - yil
i=l

This is the Baaing distance, or L1 distance, between x and y.

It is the number of coordinates for which xi # Yi" This measure

of distance is equivalent to the Euclidean, or L2, distance

between points of S.

Kanerva (1984) uses this space as the address space for his

Sparse Distributed Wemory. Since writing to and reading from the

memory are done in relation to spheres centered at the write or

read address, we need to know how many points of S lie in the

intersection of two such spheres. We will refer to the number of

points in a subset of S as the "volume" of the subset. Kanerva

(1984), p. 146, derived a formula for the volume of the lune

formed by two spheres of equal radii, that is, the number of

points that are in the first sphere but outside of the second.

The volume of the intersection of the two spheres is then found

by subtracting the volume of the lune from the volume of the

first sphere. Be also derived an integral approximation for the

volumes of the lune and of the intersection, for spheres of equal

radii. (Ibid., p.157)

Wang generalized Kanerva's formula for the volume of the

lune to the case of spheres of unequal radii. This volume is of

interest because in some applications of a Sparse Distributed

Wemory system we may want to use spheres of different radii when

writing to and reading from the memory.

In this paper we give two alternate proofs of Wang's tune
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formula. Each looks at the space S in a different way, and thus

provides some insight into various aspects of its structure. We

then derive an integral approximation for the volume of the

intersection of spheres whose radii may be unequal, and show that

for the case of equal radii, the approximation is equivalent to

Kanerva' s.

PROOF BY MOVING THE SPHERES AWAYFROM EACH OTHER

The proof in this section is based on the geometry of

spheres in the space S, and is similar in spirit to the proofs of

Kanerva (1984) and Wang. We will find the net increase in the

lane as we move the centers of the spheres away from each other

one unit at a time. The volume of the lane will then be the sum

of these net increases.

We begin with a sphere of radius s which will remain

stationary, and a sphere of radius r which will move. We will

consider the lane consisting of those points which are in the

r-sphere but not in the s-sphere. Suppose the distance between

the centers of the spheres is k. If we move the center of the

r-sphere one unit farther away from the center of the s-sphere,

we will see that there is a net decrease in the number of points

in the intersection of the two spheres, and an equal increase in

the volume of the lane. Both Kanerva and Wang pointed out that,

contrary to our usual intuition, when the r-sphere is moved in

this way, some points may move from the lune back into the

intersection; moreover, every second one-unit move results in no



net change.

We may assume without loss of generality that the center of

(0,0,...,0) and that the current center of thethe s- sphere is

r- sphere is

x- (1,1,...,I,o,o,...,o)

In this vector, the values for the first k

so that the distance between the centers is

coordinates are l's,

k. We will move the

center of the r-sphere one unit by changing its k+l st

coordinate from 0 to 1, so that the new center will be

x' = (1,1,...,1,1,0,...,0) ,

a vector with k+l l's, and the new distance between the centers

will be k+l.

We consider first the change in the r-sphere caused by

moving its center. Many points in the sphere before it is moved

remain in the sphere, while other points drop out and are

replaced by an equal number of new points. In fact, we will see

that there is a one-to-one correspondence between the points that

drop out and their replacements. Note that we are not mapping

each individual point of the sphere centered at x onto a

corresponding point of the sphere centered at x'. Instead, the

points in S will remain where they are, and we will think of the

sphere as changing position. We can think of the points in S as

being like the stationary light bulbs in the moving news

bulletins on the sides of buildings, and the sphere as a message

that appears to move as individual bulbs go on or off. Since we

are interested in the net change in the intersection as the

r-sphere moves, and the points which are in the sphere in both
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its old and its new positions do not cause any change in the

intersection, we will just ignore them and focus our attention on

the points that drop out of the sphere and are replaced by new

points.

For any point in S, if its k+1st coordinate is O, its

distance from x' is one more than its distance from x. On the

other hand, if its k+lst coordinate is I, its distance from x'

is one less than its distance from x. Therefore, a point is in

the r-sphere in both the old and the new positions of the sphere

either if its distance from x is less than r, or if its

distance from x is equal to r and its k+1st coordinate is

I. These points do not produce any change in the lune or the

intersection.

A point drops out of, or leaves, the r-sphere (when its

center moves from x to x') if its distance from x is r and

its k+1st coordinate is O. If we look at all of the

coordinates of such a point, except the k+1st, we see that the

values for the coordinates disagree with x for exactly r of

these n-I coordinates. Moreover, any assignment of O's and l's

to these n-I coordinates so that exactly

with x, together with assigning 0 to the

will define such a leaving point.

r of them disagree

k+l st coord{nate,

Conversely, a point enters the r-sphere as the sphere moves

if its distance from x' is r and its k+l st coordinate is i.

As with the leaving points, the values for the coordinates of an

entering point, for all of the coordinates except the k+l st,

disagree with x', and therefore with x, on exactly r of these



n-1 coordinates.

n-I coordinates so that

with assigning I to the

entering point.

Also, any assignment of O's and l's to these

r of them disagree with x, together

k+l st coordinate, will define an

Thus there is a one-to-one correspondence between the

leaving points and the entering points: For any leaving point,

change its k+l st coordinate from 0 to 1 and leave the other

coordinates the same, and we have an entering point, which we

will sometimes call the "replacing point". The effect of moving

the center of the r-sphere from x to x' is therefore to

remove the leaving points from the sphere and to replace each of

them with its corresponding replacing point.

Now we consider the effect of this operation on the

intersection of the r-sphere and the s-sphere. The points that

are in the r-sphere in both of its positions of course have no

effect on the intersection. Noreover, if a leaving point and its

replacing point are both in the s-sphere, they have no net effect

on the number of points in the intersection. The same is true if

neither of them is in the s-sphere. The points that do have an

effect are those leaving points which are in the s-sphere but

whose replacing points are not. We note that it is impossible

for a leaving point to be outside the s-sphere and its replacing

point to be in it, because the distance of a replacing point from

the center of the s-sphere is always one greater than the

distance of the corresponding leaving point from the center of

the s-sphere.

If the leaving point is in the s-sphere and its replacing
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point is not, then the distance of the leaving point from the

center of the s-sphere must be exactly s, so that the distance

of the replacing point from the center will be s+1. The

decrease in the volume of the intersection -- and the

corresponding increase in the volume of the lune -- is therefore

the number of leaving-replacing point pairs satisfying this

condition.

Let a be the number of O's among the first k coordinates

of a given leaving point, and let b be the number of l's among

the k+2nd to nth coordinates. There are n-l-k coordinates

in the latter set. The k+lst coordinate of the point is O.

Since the point is a leaving point, its distance from x is r.

Therefore, since x consists of k l's followed by n-k O's,

a+b=r

If this leaving point is in the s-sphere but its replacing point

is not, then its distance from the center of the s-sphere is s,

SO

and

(k- a) + b = s

Solving these equations for a and

k+r- s
a=_

r+s-k
b=

b, we find:

If k is congruent to s-r (mod 2), then a

integers, and the number of ways of assigning a

first k coordinates and b l's among the last

coordinates is

and b are

O's among the

n-l-k



{ki{nlk}k+r-s • r+s-k
--2-" --2--

This is the number of leaving points satisfying the above

conditions. Therefore this is the increase in the number of

points in the lune when the distance between the centers is

increased from k to k+l. On the other hand, if k is not

congruent to s-r (mod 2), then a and b are not integers.

In that case no points satisfy the above conditions, and there is

no net change in the volume of the lune.

Consider the lune consisting of those points in the r-sphere

but outside of the s-sphere, and assume that r < s. We begin

with the center of the r-sphere at the center of the s-sphere,

and move the former away from the latter one unit at a time. At

first, the r-sphere is completely contained in the s-sphere, so

the volume of the lune is O. This continues to be true as long

as k < s-r. When k = s-r, at which point we increase the

distance between the centers from k to k+l = s-r+l, we finally

have some points in the lune.

To give a formula for the volume of the lune when the

distance between the centers is d, we let k increase from s-r

to d-1 and add the net increases at each step. Note that the

term in the sum for k = d-1 corresponds to increasing the

distance between the centers from d-1 to d. Since for every

second value of k the volume does not change, these values of

k are. omitted. The volume of the lune for r _ s is therefore
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4-i'

L= X
k=s-r
k_s-r

(mod2)

{, }{nlk}k+r-s • r+s-k
--T-

Note that by the synet_ prope_y discussed in the next section,

the first te_ in the sun_d could be written as

{'lk+s-r
--2--

The volume of the intersection is then the volume of the

r-sphere, which is

r{IZ n
j=O J '

minus the volume of the lune.

If r = s, this l_e formula is the sue as the one derived

by K_e_a (1984), p. 146. If r > s, the individual terms in

the so above correctly give the increase in the lune as the

spheres move apart, but to find the vol_e of the lune, we must

so these te_s over k = 0 to d-l, _d add to that the volume

of the lune when the spheres have the s_e center, which in this

case is

j=s+l

If we continue to move the r-sphere until it becomes

disjoint from the s-sphere, we obtain a formula _alogous to

Corolla_ laof K_e_a (1984), p. 152. In the luneformula

above, assume that r÷s+l _ n, _d let d = r÷s+l, which is the

smallest dist_ce between the centers for which the spheres are

disjoint. Then the lune is the entire r-sphere, _d we have the

following generalization of K_e_a's corollary:
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r+s

L- X
k=s-r
k _= s-r

(mod 2)

These formulas are related to some combinatorial results for

{k}[nlk}k+rs• n--_r- j-o J

random walks which may be found in Feller (1957), p. 65-87.

PROOF BY INDUCTION ON TIIEDIMENSION OF S

We will now look at S from a different perspective, and

derive a somewhat more general formula for the volume of the

lane, which is valid for any r and s. The proof is by

induction on n, the dimension of S.

Let L(n,d,r,s) be the volume of a lune in an n-dimensional

space S, that is, the number of points in a sphere of radius r

but outside a sphere of radius s, where d is the distance

between the centers of the spheres. We will show that for all r

0 _ d _ n, L(n,d,r,s) is equal to theand s and all

following sum:

dl {k}[nlk}Z(n,d,r,s) = _ k+r-s • r+s-k
k = s-r --_-- --T--

k-s-r

(mod 2)

If r < s, this sum is the same as in the previous section.

However, the formula is also valid when r > s, in which case k

begins with negative values. (Since binomial coefficients with

negative k do not have the symmetry property given below, we

must write the first term in the summand as it appears above,

rather than in the alternate form given in the last section.)
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Binomial coefficients may be defined for any value for the

upper parameter, positive, negative, or zero, and for any integer

value for the lower parameter. Since such values may now appear

in the formula above, we define binomial coefficients as follows:

[ }_ b>0

As usual, 0! - 1. For any a and b, the fundamental recursive

property of binomial coefficients holds:

For a > O, we have the symmetry property

an example of which appeared in the last section. It follows

from this property that if b > a>_ O, then { _1 : O. Finally,

if a < O, we can see from the definition above that

These definitions and properties are given in Feller (1957), p.

48.

_re will derive two recursive formulas for L, which will

allow us to begin with any n and d such that 0 _<d < n, and

reduce the dimension of the space down to n = O. (A zero-

dimensional vector space consists of just one point.)

Let cr and cs be the centers of the r-sphere and of the

s-sphere, respectively. The lune is then the set of points whose

distance from c r is less than or equal to r, and whose
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distance from c s is greater than s.

Suppose first that n > d > O. Then, on at least one

coordinate, say on the nth, the components of the two center

vectors agree. Assume their common value on the nth coordinate

is O. Ve divide the space into two halves: Let SO be those

points whose n th coordinate is O, and let S 1 be those points

for which it is 1. Each half may be viewed as an (n-1)-

dimensional vector space, simply by dropping the nth coordinate

from each point. The distance between any two points within each

half, computed by summing over the first n-1 coordinates, is

the same as it is in S. Since both c r and c s are in SO, it

follows that the points in SO which are in the lune in S form a

lune in SO, and the number of such points is L(n-l,d,r,s).

' and ' be the points in S 1 whose first n-1Let c r c s

coordinates are the same as those of c r and c s. The distance

from any point in S 1 to either of these points is one less than

the distance from the point to c r or to c s. Therefore, a

!

point in S1 is in the r-sphere iff its distance from c r is less

than or equal to r-l, and it is outside of the s-sphere iff its

' is greater than s-1 Since the distancedistance from c s

!

between c_ and c s is d, it follows that the points in S 1

that are in the lune in S form a lune in S 1, and the number of

such points is L(n-l,d,r-l,s-1).

Therefore,

L(n,d,r,s) = L(n-l,d,r,s) + L(n-l,d,r-l,s-1)

Now suppose that n > d > O. Then, on at least one

coordinate, say on the nth, the components of the two center
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vectors differ.

and that for cs

before.

Weconsider SO first.

Assumethat the n th coordinate of c r

it is 1. We divide S into two halves as

This set contains

is O,

c r but not c s.

coordinates are the' be the point in SO whose first n-ILet cs

same as those of cs. Since the distance from any point in S0 to

cs' is one less than its distance to cs, a point in SO is in the

lune in S iff its distance from cr is less than or equal to r,

' is greater than s-1. These pointsand its distance from cs

!

form a lune in SO, and since the distance between cr and cs

is d-l, the number of such points is L(n-l,d-l,r,s-1).

By a similar argument, the points in SI which are in the

lune in S form a lune in $I, and the number of such points is

L(n-l,d-l,r- l,s). Therefore,

L(n,d,r,s) = L(n- 1,d-l,r,s-1) + L(n-l,d- 1,r-l,s)

Using these two recursive formulas, we can reduce the

problem down to a zero-dimensional space, preserving the

inequalities 0 < d _ n at each step. Or, conversely, we can

begin with n = d = 0 and build up to any n and d

inductively. We will give the boundary conditions later. It is

important to note that at some stages of this process, the values

of r and s may be greater than n, or even less than O.

Although spheres with such radii may not have much geometric

meaning, they are still well-defined algebraically, since a

sphere is defined as the set of points whose coordinates satisfy

a certain inequality. This is true even for n = O, in which

case the single point in the space has no coordinates, since a
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sum with no terms in it is defined to be zero.

To prove that the sum Z(n,d,r,s) given above is the volume

of the lune, we must show that it satisfies the two recursive

formulas, and that it also satisfies the appropriate boundary

conditions for n = O. The recursive formulas and the boundary

conditions together uniquely determine all of the values of any

function satisfying them. We begin by showing that Z satisfies

the two recursive formulas for all r and s, and for all n

and d satisfying the inequalities below.

For the first formula, assume that n > d _ O. By the

binomial coefficient formula above,

r+s- k =
--T- n-2-k }

+ r+s-k
--'2--- I

{ }= r+s-
--T- + { (n-i)-I-k<r-1)÷Is-1)-k]

Therefore, inserting these terms into the sum and summing over

k - s-r (mod 2), we have

d-1

Z(n,d,r,s) =

k=s-r
k-s-r

(rood 2)

{k}{nlk}k+r-s • r+s-k
--Y-- --2--

d-1

k=s-r
k-s-r

(mod 2)

k+r- s • r+s-
--T-- --Y--

+

d-1

k=s-r
k-s-r

(mod 2)

{k+(r_ll.(s_l)k ].{ (r(_)l)-l-k+is_l)_k }
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Since the initial value of k in the last sum above may be

written as (s-l)- (r-l), we have

_(n,d,r,s) = _(n- 1,d,r,s) + _(n- 1,d,r- 1,s- 1)

For the second recursive formula, assume n >_ d > O.

Applying the binomial coefficient formula again, and letting

k- 1, we have

k+r- s = k+r-s
--2-- --_-- k-I 1

+ k+r-s
"-T--" 1

The other binomial coefficient in the summand can be written as

= = (r: 1)+s- j
2

Putting these together and summing over k =- s-r (mod 2), which

is equivalent to j = (s-1)-r -_ s-(r-1), we have

r,(n,d,r,s) k+r-s • r+s-k
k = s-r --_" --T-

k=_s-r

(mod 2)

d-2

j _

r

r

{j+r-ts-1) • r+(s-1)-j
2 2

d-2

J."= s-r-I
J = s-(r-1)

(mod 2)

In the last sum above, if j = s-r-l, then the first term in the

sunand is O, so we can begin the sum with the next available

{ j+(rjl)'s2 }'{ /n-_/:ls'i}2
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value of j, which is two greater: j = s-(r-1). Therefore,

Z(n,d,r,s) = Z(n- 1,d- 1,r,s- 1) + r,(n- 1,d- 1,r- 1,s)

We have now shown that the sum satisfies the two recursive

formulas. To establish boundary conditions, we consider the case

n = d = O, with any values for r and s. In this case we have

a zero-dimensional vector space containing one point, which is

the center of both spheres. Since the _sphere is the set of

points whose distance from the center is less than or equal to

r, the sphere contains one point if r _ O, and it is empty if

r < O. Similarly, the complement of the s-sphere is empty if

s _ O, and it contains one point if s < O. Therefore, the

number of points in the lune is 0 or I:

L(O,O,r,s) = 1 if r > 0 and s < 0

that

= 0 otherwise

We rewrite the sum for n : d : 0 by letting

k = 2i-r+s.

-I

Z(O,O,r,s) =

k=s-r
k=s-r

(mod 2)

The sum now becomes

k -1-k

k+r-s
i= T, so

I

:E{2i-r,-s}{-1-2i"r-s}= i " r-i
i=O

This sum is over consecutive integers i, from 0 to I, which is

r-s-1 Since k = 2i-r+s is alwaysthe greatest integer in ---[-- .

negative in this sum, we can rewrite the first binomial

coefficient as

{2i_r s} {r-s-i-1}i = --1-i i
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Now let t = -s-l, and the sum becomes

I

i " r-i ,
i=O

where
Since s < 0 is equivalent to t >_O, we must show that

this sum is I if r > 0 and t > O, and is 0 otherwise. If

r+t < O, there are no terms in the sum, and the sum is O. If

r+t
r+t > O, then for all terms in the sum, i <-T-, so

(r-i) + (t-i) = r + t- 2i >_0 ,

and by the symmetry property,

r+t-2i =
r-i t-i

If r < O, then for all terms in the sum, r-i < O, so this

binomial coefficient is O, and the sum is O. Similarly, if t <

O, then the sum is O. So the sum is 0 if either r or t is

negat ive.

Assume from now on that r > 0 and t > O.

symmetry property above that the summand is 0 if i > r or i >

t. Therefore we can redefine I, the upper limit for i, to be

I = min(r,t). This is less than or equal to the original value

of I.

Suppose that either r = 0 or t = O. Then the sum has

only one term, the term for which i = O, and in either case that

term is 1. Therefore, A(O,t) = A(r,O) = 1.

For any r > 0 and t _> O, and any i < I = min(r,t):

{ r+t-i} { r+t-2i} (r+t-i)! (r+t-2i), r!i " r-i = i! (r+t-2i)! " (r-i)! (t-i)! r-T.

We see from the
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=.
r! (r+t-il!

i! (r-i)! r! (t-l)!

The sum is now

_Ir).{r+_roi}

We will show that this sum is 1 for all

I

i=O

r>O

The proof is by induction on the quantity

already shown that A(O,t) = A(r,O) = 1

t. We therefore assume that A(r,t) = 1

and t > O.

M = r+t. We have

for non-negative r and

for all non-negative r

and t such that r+t < M.

Let r > 0 and t > 0 be such that r+t : W. Applying the

binomial coefficient formula twice to the summand, we have

{i)[r._-i)__(i}.{._t-i-1}_{i}(r't-i-1r r r 1
• r r r-I ,

Multiplying each of these terms by (-1) i and summing over i ?.

0, we find that the first of these three terms gives A(r,t-1)

and the second term gives A(r-l,t), assuming that the upper

limit for i is correct. For the first sum, if r < t, the

upper limit remains I = r; if r _ t, the summand is 0 for i =

I = t, so the upper limit becomes t-1. For the second sum, if

r > t, the upper limit remains I = t; if r _ t, the summand is

0 for i = I = r, so the upper limit becomes r-l. So for both

sums the upper limit is the minimum of the two parameters.

For the third term in the expression above, we let j = i-I.

Multiplying by (-I)i and summing over i > 0 gives
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1-I

j=-1

Since the summand is 0 for j = -I, we can change the initial

value of j to O. The upper limit for j is

I- 1 = min(r,t) - 1 = min(r-l,t-1)

Therefore this sum is -A(r-l,t-l).

We now have

A(r,t) = A(r,t-l) + A(r-l,t) - A(r-l,t-1)

By induction on M = r+t, each of the three terms on the right is

1. Therefore, A(r,t) = I+i-1 = I, and the proof is complete.

As in the previous section, the volume of the intersection

of the spheres is the volume of the r-sphere minus the volume of

the lune.

A special case of the lune formula, as derived in this

section, is the case where r > s and d = O. The spheres are

then concentric, and the lune is a kind of spherical shell, whose

volume is

j=s+1J}

By the lune formula, this volume is equal to

-i

k=s-r
k _=s-r

(rood2)

Unlike the sums derived in the previous section, this sum, in

ik}in-l-k}k+r-s • r+s-k
--_-- --2"--

and rewrite the sum as

which all values of k are negative, is an alternating sum. To

k+r-s
see this, we let i = --2--' as we did earlier in this section,
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I

i=O

I

_. {2i-r+si

i=O

}.{n-1+r.s-2i}r_1

i " r-i j=+l J '

where
Finally, if we let s = -I in the sum above, the s-sphere

is empty, and we have an alternating sum for the volume of a

sphere:

I

r- j=O '
i=O

where I= [_].

AN INTEGRAL APPROXIMATION

Kanerva (1984) derived an integral approximation for the

volume of the intersection of two spheres with the same radius.

We will use a different method to derive an approximation for the

case of two spheres whose radii may be unequal. The two

approximations will be shown to be equivalent if the radii are

equal.

Suppose we have a sphere of radius

(0,0,-..,0), and a sphere of radius r

(1,1,.-.,1,0,...,0), where the first d

s with center cs =

with center cr =

components of cr are

l's, so that the distance between the centers is d. For any

point in S, let y be the number of O's among the first d
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coordinates, and let

coordinates.

given y is

x be the number of O's among the last n-d

The number of points in S having a given x and a

If we choose a point in S at random, as if we were to toss a

fair coin n times to determine the values for each of the

coordinates, then x and y

variables, where x

and y has mean

has mean

and standard deviation

_ill be independent binomial random

n-d-2- and standard deviation

_. The joint

probability distribution of x and y is

d}2-n{Vll,
For moderately large d and n-d, this joint distribution may be

closely approximated by a bivariate normal distribution.

For any point in S, its distance from cs is the number of

1's among its coordinates:

(d- y) + (n- d- x) = n- x- y

Its distance from cr is the number of coordinates on which it

differs from Cr:

y , (n- d- x) = n- d- x + y .

We see that both distances are functions of x and y. We can

therefore group the points of S according to their values of x

and y, and thus represent S by lattice points in the XY plane,

as shown in Figure I, where each point in the plane is given a

weight according to the number of points of S it represents.

This weight is 2n times the probability distribution above.

The s-sphere is the set of points satisfying
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which may be written as

n-x-y<s,

y>_n-s-x.

This sphere is represented in Figure I as the region in the XY

plane on and above the line y = n- s- x. The r-sphere is the

set of points satisfying

n- d- x+y< r,

that is,

y<x- n+d+r,

and is represented in Figure I as the region on and below the

line y = x- n + d + r. The intersection of the two spheres is

then the region in the plane to the right of (x0,Y0), the point

where the two boundary lines meet. Solving for x0 and Y0

gives

and

r+s+d
x0 = n - "-'2"--

r-s+d
Y0 =--T- •

(x0 and Y0 may not be integers, but that does not matter.)

can also write the equations of the two boundary lines as

_e

Y = YO (x- Xo) and y = YO + (x- Xo)

Since the intersection of the spheres is the set of all

points in S represented by the points in the right-hand region of

the XY plane, the number of points in the intersection is

Yiy0+(x-x0) nxd{ l{a,l
x_-Xo Y-Yo- (x- Xo)

Since this double sum may be written as
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x y

it is not as hard to evaluate numerically as other double sums

would be. A computer algorithm for evaluating it could be

written as follows: For each x > x0, suppose that the inner sum

(along a vertical line segment in the XY plane) has been

computed. Multiply it by { nxd } and add it to the overall

sum. Then increment x, update the inner sum over y by adding

a termat eachendof the sum, update { nxd 1, and continue as

above.

We will now transform the XY plane so that the joint

probability distribution defined above for x and y may be

approximated by the standard circular bivariate normal

distribution. We define new variables by subtracting the mean

and dividing by the standard deviation.

n-d
x- T

U=

and

Then u and v

Let

d
y-_

V =

are independent random variables, each with mean

0 and standard deviation 1. Since for large n-d and d, each

is approximately normal, their joint distribution is

approximately the circular bivariate normal distribution, whose

density function is

1 (u2+v2)/2
e- du dv
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The point (xO,YO) is transformed into

plane, as shown in Figure 2, where

n-r-s
u0 =

and

A little algebra shows.that

r-s

and

U- Uo=

X- X0

(Uo,Vo) in the UV

Y - YO

v - v0 =

Thus the line y - YO : x - xO, which borders the r-sphere and

goes above the intersection, is transformed into

v- v0 = qn:-d.(u-uO),

or v = v0 + m(u- Uo), a line in the UV plane whose slope is

m = q_:-_. Similarly, the line bordering the s-sphere and going

below the intersection becomes v = v0 - m(u - Uo). The region

to the right of (Uo,Vo) in Figure 2 represents the intersection

of the spheres.

We will now make some assumptions about the parameters;

Figure 2 is drawn based on these assumptions. We assume that

s _ r < _, from which it follows that v0 > 0 and r+s < n, so

that u0 > O. Thus (Uo,Vo) is in the first quadrant of the

plane. Also, it follows that the line in Figure 2 bordering the

r-sphere goes below the origin. (It must, because the volume of
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the r-sphere is less than or equal to half of S.)

The volume of the intersection may be approximated by

integrating the bivariate normal density over the region of the

UV plane to the right of (Uo,Vo) and multiplying the result by

2n. There are many techniques for integrating this density over

various regions in the plane. See for example Abramowitz and

Stegun (1964), p. 956. We will derive an integral formula which

can be transformed into Kanerva's formula if r = s.

We will describe points and lines in the UV plane using

polar coordinates (R,O), where u = R cos 0 and v = R sin 0.

The bivariate normal density function in polar coordinates

becomes

1 e-R2/2
R dR dO,

which is circularly symmetric about the origin, since it is a

function only of R.

Consider the line v = v0 + m(u - Uo), which is the boundary

of the r-sphere. Draw a line segment from the origin to this

line and perpendicular to it. Let A be the length of the

segment, and let a be the angle at the origin from the segment

up to the U-axis (so that a is a positive angle). The equation

for the line bounding the r-sphere may now be written as

R = A see (a+O) .

Since the angle between this line and the U-axis is

have
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_nd since

sin a-:_.

Let (Ro,0o)
coordinates.

we have

sin2a + cos2a = I, we see that cos a = _ and

be the point (Uo,Vo) expressed in polar

Since this point is on the line R = A sec (a+O),

A = _ cos (0+00)

= R0 cos 00 cos a- R0 sin 00 sin a

= Uo,a:-_ Vo_

= (n-r- s) - (r- s)

n

_- r

Because of the circular symmetry of the density function,

the integral of the density over the half-plane below the line

R = A sec (a+O), the region representing the r-sphere, is

I-F(A), or F(-A), where F is the standard normal cumulative

distribution function. To see this, rotate the plane so that the

line bounding the r-sphere is vertical. It then crosses the new

U-axis at A. Since the density function is circularly symmetric,

the rotation does not change it, so we can go back to rectangular

coordinates in the rotated plane and integrate over the region.

Thus the volume of the r-sphere is approximately 2n.F(-A), as

was shown by Kanerva (1984), p. 31.

Now draw a line from the origin through (Uo,Vo) and

continue it beyond that point. Because of the assumptions we
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made earlier, this line goes through the region representing the

intersection of the spheres, cutting it into two pieces. We will

evaluate the integral over each piece separately, beginning with

the piece lying above the line we just drew.

We integrate over the upper piece as follows: Imagine a

searchlight at the origin, rotating counterclockwise and sweeping

over this piece of the plane. For each point (R,9) on the line

R = A sec (a+O), beginning with (Ro,O0) and moving upward, we

draw a ray from the origin through the point (R,O) and

continuing through the region of integration. We integrate with

respect to R along this ray (on which 0 is constant), as R

increases from A sec (a+O) to ®. Then we integrate with

r
respect to 0, as 0 increases from 00 to _ - a. The latter

term is the upper limit for 0 because it represents a ray from

the origin parallel to the line bounding the r-sphere. Thus the

integral over the upper piece is

F

0=-00

f 1 e-R2/2 R dR.

R - A sec (a+O)

The inner integral may be evaluated by letting

giving us

1 e-A2sec2(a+O)/2

Therefore, if we let

upper piece as

t = R2/2,

z = a+O, we can write the integral over the
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,/2

1 f A2sec2z/2e- dz

a+e0

The lower limit for

to the line bounding the s-sphere. Letting z = a-O

interchanging the limits of integration, we have

To find the integral over the lower piece of the

intersection, which lies between the line from the origin through

(Uo,Vo) and the line bounding the s-sphere, we go through a

similar process. Draw a line segment from the origin to the line

bounding the s-sphere and perpendicular to it. The angle from

the U-axis to this segment is a, the same angle as before, but

in the first quadrant. Let B be the length of the segment. The

equation in polar coordinates of the line bounding the s-sphere

is then R = B sec (e-a) = B sec (a-O), and we can show that

n

_- S
]3 = --

Integrating with respect to R along a ray from the origin

going through the lower piece of the intersection, and then

integrating with respect to e, we have

00 ®

dO _ e" R dR

_a-_ R : B sec (a-e)

00

1 f B2sec2(a - 0)/2= _-_ e- dO .
J

T

a- 2

0 represents a ray from the origin parallel

and
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,/2
I dz.[ e-B2sec2z/2

w

a-00

This integral is of the same form as the integral for the upper

piece.

The approximation to the volume of the intersection of the

spheres is then 2n times the sum of the two integrals.

In the special case r = s, we have v0 = O, 80 = O, and

A = B, so the line cutting the intersection into two pieces is

the U-axis. The two pieces are therefore symmetric to each

other, and their integrals are equal. The sum of the two

integrals is therefore

r/2

r f e-A2sec2z/2 dz .

Kanerva (1984), p. 157, derived the following integral

approximation for this same quantity:

i

f ,
2_r_

d/n

2

e dx ,

where

n

r'_=_A.

Cp =

We will show that these two integrals are equal.

Beginning with Kanerva's integral, let y = l-2x. Then

dy =-2dx and 4x(1-x) = 1-(1-2x) 2 = 1-y 2. Now let y = cos 2z.

Then dy =-2 sin 2z dz, and dx = sin 2z dz. We note that the
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I

cos-I(I-2x)function z =

monotonically increasing for

Also,

is well-defined, continuous, and

0 < x < 1, with range 0 _ z < g.

2_ = q_ = sin 2z

In the exponent we have the term

2(l-x) = I + y = 1 + cos 2z = 2 cos2z ,

where we used the double-angle formula for cos 2z.

Kanerva's integral now becomes

_f I A2/(2 cos2z)e" sin 2z dz

= -A2sec2z/2 dz

The upper limit of integration, x = I, corresponds to y = -I,

T

and therefore to z = _. The lower limit of integration is x =

d Since we found earlier that

sina= _q ,

the lower limit corresponds to

d
y = 1 - 2-_ = 1 - 2 sin2a = cos 2a

Finally, since y = cos 2z, the lower limit is z = a. Therefore

the two integrals agree.

Kanerva (1984) states, on p. 158, that if the lower limit in

his integral is O, the integral is F(-A), the approximation for

the volume of the entire sphere. A lower limit of x = 0

corresponds to z = 0 in the equivalent integral above. Since

we defined z to be a+8, this integral sweeps over the part of

T
the r-sphere in Figure 2 lying between 8 =-a and 8 = _- a.
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Thus the region over which we are integrating is exactly one half

of the half-plane which represents the r-sphere. The integral of

the density function over this region is therefore half of

F(-A). Since our equivalent of Kanerva's integral is twice the

integral of the density function, this integral equals F(-A).

Kanerva (1984) then considers, on p. 159, the case where d,

the distance between the centers, is _. In this case the

spheres should be "independent", in the sense that the

probability that a randomly chosen point lies in the intersection

of the two spheres is approximately the product of the

probabilities that the point lies in the individual spheres. (Of

course, if the spheres are small, they would be disjoint, so we

assume that the intersection is large enough so that these

approximations may be applied.) _e will consider the general

case where r and s may be unequal. These probabilities may

be approximated by integrating the density function over the

appropriate regions. For the r-sphere, we saw that the integral

is F(-A). Similarly, for the s-sphere the integral is F(-B).

Since d = _, we have m = 1, so the lines in the UV plane

bounding the spheres have slopes of 1 and -1, and are therefore

perpendicular. If we rotate the plane 450 counterclockwise, the

line bounding the r-sphere will be vertical, crossing the new

U-axis at A, and the line bounding the s-sphere will be

horizontal, crossing the new V-axis at B. The intersection of

the spheres is now represented by the part of the plane above and

to the right of these lines. By the circular symmetry of the

density function, the new u and v are independent normally
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distributed random variables. Therefore, if we go back to

rectangular coordinates and integrate over the intersection

region, we find that the integral is F(-A).F(-B), the product of

the probabilities.

The integral approximations in this section may be improved

upon by using the "continuity correction", a method often used

when approximating discrete random variables by continuous ones.

The correction consists of taking the radii of the r-sphere and

s-sphere to be r + ½ and s + ½, respectively, sothe that the

lines bounding the spheres in Figure I lie halfway between the

points in the spheres and the points outside of the spheres. The

equations of these lines, and the other quantities calculated

from them, are then modified accordingly.

I wish to thank Mike Raugh for many stimulating discussions

on this subject.

REFERENCES

M. Abra_owitz and I. E. Stegun (Eds.). 1965. Handbook of

lathematical Functions. Dover Publications.

W. Feller. 1957. Am Introduction to Probability Theory and

Its Applications, Yolume 1 (2nd edition). John Wiley /_ Sons.

P. Kanerva. 1984. Self-Propagating Search: A Unified Theory

of lemory. Stanford University Ph.D. dissertation; Bradford Books

(llIT Press). In press.



_u s-sphere

/
q_ Intersection

r-sphere

Figure I

X

s-sphere

Intersection

U

r-sphere

Figure 2




